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This paper considers the situation in which an originally chaotic orbit would, in the absence of inter-
vention, become periodic as a result of slow system drift through a bifurcation. In the biological context,
such a bifurcation is often undesirable: there are many cases, occurring in a wide variety of different sit-
uations, where loss of complexity and the emergence of periodicity are associated with pathology (such
situations have been called “dynamical disease””). Motivated by this, we investigate the possibility of us-
ing small control perturbations to preserve chaotic motion past the point where it would otherwise bifur-

cate to periodicity.

PACS number(s): 05.45.+b, 87.10.+e¢

I. INTRODUCTION
A. Preserving chaos

In this paper we study the following situation. There is
a nonlinear system that behaves chaotically when a sys-
tem parameter p is below some critical value, p <p.. As
p increases through p_, there is a bifurcation in which the
chaotic motion is replaced by periodic motion. The prob-
lem we address is whether, by using small controls, it is
possible to keep the motion chaotic when p >p.. As an
example, consider the case of a d-dimensional map,

xn+1=F(‘xn’p’cn) ’ (1

where x, is the d-dimensional state of the system at time
n, and c, denotes the control variable. Roughly, we can
think of the control as tuning some “knob’> whose setting
¢, is at our disposal.

For ¢, =0, the map (1) bifurcates from chaos to period-
icity as p increases through p.. The question is how do
we program the time dependence of ¢, to ensure chaotic
dynamics when p >p.. We desire, in addition, that |c,,|
be small, and that the control only need to be applied in-
frequently (i.e., ¢, =0 most of time).

Past work on controlling chaos has considered the situ-
ation where the motion is chaotic and one wishes to
modify it to obtain improved system performance by sta-
bilizing a chosen unstable periodic orbit embedded in the
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chaotic attractor [1,2]. In the present work, however, we
regard the complex temporal behavior of the chaotic or-
bit as “good.” Thus we wish to intervene in such a way as
to keep it alive in situations where it would naturally be
absent. The motivation for this is biological, and is dis-
cussed in the next subsection.

B. Biological motivation

It has been known since the 1940’s that systems of non-
linear differential equations representative of self-
excitatory biological processes, such as the heart beat and
neuronal discharge, manifest parameter regions that gen-
erate chaotic orbits [3]. In the 1970s, the chaotic
behavior of discrete maps also became relevant to biologi-
cal systems such as population dynamics within ecologi-
cal context in regimes of high fecundity and nutritional
support [4]. Other work suggested that patterns of
behavior in biological observables over time better
represented some medical diseases than did characteristic
structural and/or chemical abnormalities; that bifurca-
tions between dynamical states could be associated with
the onset and pathophysiology of a variety of disease
states [5]. Since that time, one particularly counterintui-
tive (and somewhat controversial) theme of a number of
studies carried out within the context of ‘“dynamical
diseases” is that in some biomedical systems, chaotic
dynamical behavior is “normal.” Bifurcations to periodic
behavior (observed directly or reflected in decreased sta-
tistical measures of complexity) are viewed as a patho-
physiological loss of the range of adaptive possibilities.
The idea was that “getting stuck” can lead to disease
states.

A diverse list of examples of emergent pathophysiolog-
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ical periodicity (and/or decreasing measure indicative of
dynamical complexity) in otherwise more irregular, nor-
mal time dynamics includes cell counts in hematological
disorders [6], stimulant drug induced abnormalities in
patterns in time of the behavior of brain enzymes, recep-
tors, and animal explorations of space [7], cardiac inter-
beat interval patterns in a variety of cardiac disorders [8],
the resting record in a variety of signal sensitive biologi-
cal systems following desensitization [9], experimental
epilepsy [10], hormone release patterns correlated with
the spontaneous mutation of a neuroendocrine cell to a
neoplastic tumor [11], the prediction of immunological
rejection of heart transplants [12], the electroencephalo-
graphic behavior of the human brain in the presence of
neurodegenerative disorders [13], neuroendocrine, cardi-
ac, and electroencephalographic changes with aging [14],
and imminent ventricular fibrillation in human subjects
[15].

The above references are only a representative list, and
it is possible to cite many more illustrating the general
thesis that loss of chaos is often associated with disease
[16]. Thus we can view the onset of a diseased state as
being caused by a slow drift of the parameter p in Eq. (1)
through the critical value p,. As an example suggesting
the utility of control in some of these situations we note
the recent work [17] that has the goal of preventing
epileptic seizures by time dependent stimuli applied to an
appropriate region of the brain.

C. Loss regions and control strategy

The three most common bifurcations that can lead
from chaotic motion directly to a low period attracting
periodic orbit are [18] (1) crises [19], (2) type I intermit-
tency [20], and (3) type III intermittency [20]. In all of
the above three cases, for p > p., one can identify a loss
region L, such that, after the orbit falls in L, it is rapidly
drawn to the periodic orbit. Before falling in L the orbit
motion can exhibit characteristic chaoticlike behavior;
that is, it is a chaotic transient.

One strategy to ensure chaos for p >p_ is to consider
successive preiterates of L,

L,=F~YL,p,0),

L,=F \L,,p,00=F 4L,p,0) ,
Ly=F"\(L,,p,00=F(L,p,0),

L,=F L, _,p,00=F ™L,p,0).

Thus L,, is the set of points that map to the loss region L
in m iterates. Note that as m increases, the width of L,,
in the unstable direction (or directions) has a general ten-
dency to shrink exponentially. (There is always at least
one unstable direction due to the existence of chaos.)
This suggests the following approach. Pick some suit-
able value of m, which we denote M. Assume that
the orbit initially starts outside the regions
Ly ULy U --- UL, UL. If the orbit lands in L,;,
on iterate n we apply our control ¢, so as to kick the or-
bit out of L, on the next iterate. Because L,, is thin, the
required ¢, can be small. By making M larger we typical-
ly make the required size of the control smaller. Thus

there is a trade off involving the control size and the
number of preiterates M. Consideration of this trade off
becomes particularly important if noise is present or if
the dynamical system F is not known with absolute pre-
cision. After the orbit is kicked out of L,,, it is expected
that it will execute a chaotic orbit, until it again falls in
L, ., at which time the small control is again activated,
and so on. Thus we achieve the desired result that the
control can be set to zero much of the time.

We call the above strategy 4. There are also other
strategies that can be usefully formulated. These, howev-
er, are less general and depend on the type of bifurcation
involved (i.e., crisis, type I intermittency, or type III in-
termittency). We consider some of these other strategies
and compare them to strategy A in the subsequent dis-
cussions dealing with the relevant bifurcations [21].

In Sec. II, we illustrate our control strategies using
one-dimensional map examples exhibiting crisis, type I
intermittency, and type III intermittency transitions from
chaos to periodicity. Sec. III considers a two-
dimensional map example, and Sec. IV focuses on the
effect of noise.

We emphasize that, although our discussion is within
the context of maps [Eq. (1)], the ideas are also relevant
to continuous time dynamical systems (e.g., ordinary
differential equations).

II. ONE-DIMENSIONAL MAP EXAMPLES

A. Crisis

We considered the situation shown in Fig. 1 for ¢, =0.
When p <p,, there is a chaotic attractor in the region
0<x =<1, and a coexisting attracting periodic orbit of
period one located at x =x, <0; see Fig. 1(a). As p in-
creases through p, the chaotic attractor is destroyed by a
crisis [Fig. 1(b)], and almost all points with respect to the
Lebesgue measure that are initialized in 0 <x =1 eventu-
ally go to the periodic attractor. We identify the loss re-
gion L as shown in Fig. 1(c). An orbit point in L maps
one iterate later to the interval L , and one iterate after
that to the region x <O, after which it approaches the
periodic orbit x =x, monotonically. Also shown in Fig.
1(c) is the set L, of points that map to L on one iterate.
Each set L,, consists of 2™ intervals; thus, as shown in
Fig. 1(c), the set L, consists of two intervals. As a nu-
merical example, assume that the map applying for x >0
is of the logistic form, and that the dependence of
F(x,,p,c,) on c, is simply additive,

F(x,,p,c,)=F(x,,p)+c,=px,(1—x,)+c, . (2)

The critical value of p for Eq. (2) (with ¢, =0) is p, =4.
For p > p. the width of the loss region L is

w(L)=[(p —p,)/p. 1" *p./D)"?, (3a)
and the width of L  is
w(L )=(p—p)/p. - (3b)

To apply strategy A4 the control ¢, is programmed as
follows. Suppose that at time n the orbital point x, falls
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FIG. 1. Illustration of a crisis transition from a chaotic at-
tractor to periodic motion (x =x,).

in one of the 2M*! intervals of L,,,, and denote this
interval [xM*!1 xM*1] Assume without loss of gener-
ality that F(xM*1,p,0)<F(x*! p,0). We desire
Xp 1 <F(xM*1p,0) or x,,;>F(x™*!p,0). To do so
we choose ¢, to be whichever of the following two values

has the smaller magnitude,
L1[pxM {1 —xMtY—px,(1—x,)],

"= L1[pxM T (1—xM*Y)—px,(1—x,)] . “@

c

Figure 2 shows a plot of x, versus n with strategy 4
control for the case of p=4.1 and M =1. Figure 3(a)
shows ¢, versus n for the same case. Over the time
period shown in Fig. 3(a), the largest value of |c,]| is
Cmax —0.029, and the fraction of the time with ¢, 70 is
0.085. Increasing M to M =35, we obtain the plot ¢,
versus #n in Fig. 3(b). By increasing M the largest value of
lc,| is reduced to c¢,,, =0.0017 in Fig. 3(b).

We now consider a very simple alternate strategy that
works particularly well when p is only slightly bigger
than p,. We note from Egs. (3) that when p is close to
Do» w(L,) is smaller than w(L) by the factor
[(p —p.)/p.1"/%. Thus it is easier to kick the orbit out of
L, than L. Strategy A reduces the kick by making M
large enough. Instead, in our alternative strategy we wait
until the orbit falls in L, and then apply a ¢, so that we
kick the orbit from L | into the region x <1. This can be
accomplished, for example, by setting

¢, =—(p—p.)/p, (5)

whenever the orbit falls in L. This has the effect of
changing the map from the form shown in Fig. 1(c) to
that shown in Fig. 4. Using the same value of p as in Fig.
3(a) and 3(b), the alternate strategy yields the plot of ¢,
versus #z in Fig. 3(c). Note that c_,, for strategy 4 with
M =1 [Fig. 3(a)] is larger than the value given by Eq. (5)
[€¢max =0.029, as compared to (p —p.)/p. =0.025], while,
when M is increased to M =5 [Fig. 3(b)], strategy A4
yields a much lower value.

0.4 |
0.2
0 . .
0 100 200 300
n
FIG. 2. x, versus n with control for M=1 and

p=4.1>p.=4.
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FIG. 3. ¢, versus n for p=4.1. (a) Strategy 4 with M =1, (b)
strategy A with M =35, and (c) the alternate strategy.
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FIG. 4. Effective one-dimensional map associated with the
alternate control strategy given by (4) whenever x,, is in L.

B. Type I intermittency
The example we consider is
F(x,,p,c,)=F(x,,p)+c,
=4px,(1—x,)[1—px,(1—x,)]+c, . (6)

Figure 5(a) shows a plot of F(x,,p) versus x, for
p=3.350<p.=3.375. In this case there is a chaotic at-
tractor located in 0<x <1. As p increases through p_, a
tangent bifurcation occurs creating a stable attracting
period one orbit x =x , and a repelling period one orbit
x =xp (see Fig. 6). Figure 5(b) shows a plot of F(x,,p)
versus x, for p=3.4>p_. (The points x , and xy are the
new intersections of the diagonal dashed line with F.) A
bifurcation diagram for this map is shown in Fig. 7.

Figure 6 shows a schematic identifying the loss region
L for this case. Here L is the interval
(1—xg)<x <xg [(1—xg) is a preiterate of xz ]. Note
that, near the bifurcation (i.e., when p —p_, >0 is small),
x 4 isclose to xg; x4=xg at p=p,.

Figure 8(a) shows the orbit x, versus n for a case
without control for p=3.5>p.. Figure 8(b) shows the
orbit from the same initial condition as Fig. 8(a) using
strategy A4 control with M =2, and Fig. 8(c) shows the re-
sulting ¢, versus n. The fraction of the time that the con-
trol is activated is 0.08, and the largest |c, | over the time
interval plotted is ¢, =0.01.

Unlike the crisis case, for type I intermittency the
width of L does not approach zero as p —p, —0%. Rath-
er, L appears immediately at p =p_ with nonzero width.
On the other hand, for small p —p >0, the distance
(xg —x 4) is small, namely, (xgzg—x,)~O0(V'p—p.).
This motivates the following alternate strategy applicable
for p close to p.. This alternate strategy utilizes a control
of order v/ p —p, and hence is small if p is close to p,. If
x, first enters L in the region x , <x <xg, we apply a
positive kick ¢, to place x,, ; in the region x >x,. Once

in this region the orbit is repelled from xg, moves to the
right, and executes a chaotic transient orbit, until it again
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FIG.5. F(x,,p) versus x, for (a) p=3.35 <p.=3.375 and (b)
p=3.40>p,.

F(xpp)

Xg4 xR 1 x,

FIG. 6. Schematic identifying the loss region L.

P

FIG. 7. Bifurcation diagram for F(x,,p). Note the intermit-
tent transition at p =p_.=3.375.

enters L. If x, first enters L in the region x <x , with x

relatively far from x4, [i.e., (x ,—x)>O0((V'p—p.)], we
can wait until it either lands in x , <x <xjy or else ap-
proaches sufficiently close to x , with x <x ,. In either
case, a kick of order 1/ p —p, will be capable of placing a
next iterate in x > xp.

C. Type III intermittency

We consider the map

F(x,,p,c,)=F(x,,p)+c,

=x,[p(12.5—7p)x,} —p(11.5—7p )x}?
+x2—1]+c, . (7

The map F(x,,p) has a period one orbit at x =0. As p
increases through p,=1, this period one orbit becomes
unstable, experiencing an inverse period doubling bifur-
cation. The map yields a chaotic attractor for p >p,.
(Note that the role of parameter increase here is opposite
to the convention used in the previous discussion.) Fig-
ures 9(a) and 9(b) show plots of the map F(x,,p) for
p=1.2>p,. (chaotic attractor) and for p=0.8 <p, (x =0
being the periodic attractor). We indicate that loss re-
gion in Fig. 9(b) as the interval bounded by the two com-
ponents of the unstable period two orbit created at the bi-
furcation. For small (p, —p) >0 the width of L scales as
w(L)~0(V/'p,—p ). (This is similar to the crisis case.)
Once an orbit enters L its distance to the period one at-
tractor at x =0 decreases monotonically as the orbit flips
alternatively from x >0 to x <0. Also indicated in Fig.
9(b) are the intervals comprising L.

Figure 10(a) shows the orbit x, versus n for a case
without control for p =0.9 <p.. Figure 10(b) shows the
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(G ) 1 orbit from the same initial condition as Fig. 10(a) using
Ur\ strategy A4 control with M =2. Figure 10(c) shows the

resulting ¢, versus n. The fraction of time the control is
activated is 0.03, and the largest |c,,| over the time inter-
val of the plot is ¢, =0.016.

0.75

Xn os

III. TWO-DIMENSIONAL MAP EXAMPLE

Strategy A can also be applied without the explicit
construction of all the L,,. This is particularly useful in
the case of two-dimensional maps. Consider the crisis sit-
vation schematically illustrated in Figs. 11. For p <p,

0.25

0 50 100 150 200 there is an chaotic attractor [Fig. 11(a)]. The point A4 is
an unstable saddle on the basin boundary which is the
n closure of the stable manifold of 4. As p increases
1 (0 ) T N
(b) S
0.75 | J 0.5
Xn 0.5 F(anp) o414
0.25 0.5
0 T T T T
0 50 100 150 200 -1
n
Xn
0.04
(c)
0.02+

-0.02

-0.04

T T
0 200 400 600 800 1000

n Xn
FIG 8. (a) x, versus n without control for p=3.5>p.. (b) x, FIG. 9. F(x,,p) versus x, for (a) p=1.2>p.=1.0 and (b)
versus n with control and M =2 for p=3.5>p.. (c) ¢, versus n p=0.8<p. (the curvature near the origin is exaggerated for

for the conditions of (b). clarity).
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-0.04 T T T T
] 200 400 600 800 1000

FIG. 10. Results of p=0.9<p,. (a) x, versus n without con-
trol. (b) x,, versus n with strategy 4 control and M =2. (c) ¢,
versus n.

through p., the attractor is destroyed by colliding with
the basin boundary, resulting in a situation shown in Fig.
11(b) [22]. We assume that after a chaotic transient al-
most all points go to a periodic attractor located else-
where in the phase space. We call the shaded region in
Fig. 11(b) L , according to the terminology in Sec. IT A.
Imagine a point x in the former basin of attraction, and
examine the (M +2)th iterate of x. If this (M +2)th
iterate falls in L, then we say x is in L, ,, and apply a
kick ¢, to the system so that the next iterate of x falls
outside of L,,. [By this we mean that the (M +1)th
iterate of the kicked point without further perturbation
falls outside of L ,.] After this we set ¢, =0 and wait un-
til the procedure needs to be repeated again.

In practice, the above steps can be further simplified.
Specifically, we can replace the segment of the stable
manifold near the shaded area in Fig. 11(b) by a straight
line such that L is to its right. Instead of considering
the point falling into the shaded region we can just test
whether it is on the right side of this straight line.

Now we use the Hénon map

X, 41=p—x2+0.3y,+c, ,

In+1= %4 »

as our numerical example to illustrate these ideas. Here
p.=~1.42 and the straight line mentioned above is chosen
to be 10x —y =20 for p =2.0. The value of ¢, picked has

Attractor (@)
A
(b)
zz—L4
A

FIG. 11. Schematic of a two-dimensional crisis transition.

(a) p <p. and (b) p > p,.
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FIG. 12. Results for the Hénon map with p=2.0. (a) x,
versus n with control and M =5. (b) Sketch of the chaotic sad-
dle with (x,,,y,). (c) ¢, versus n.

the smallest amplitude such that the orbit is still kicked
out of L,, with M =35. Figure 12(a) shows a plot of x,
versus n with strategy 4 control. A rough sketch of the
chaotic saddle can be obtained by plotting (x,,y,) [Fig.
12(b)]. For the same case, c, versus n is displayed in Fig.
12(c). The largest value of |c,| is ¢, =0.034, and the
fraction of time with ¢, 50 is 0.14.

A simple alternate strategy that can be employed here
is to choose ¢, =p,—p=0.6 which permanently elimi-
nates the situation in Fig. 11(b). The price one pays here
is a much larger control that is on 100% of the time.

IV. EFFECT OF NOISE

The effect of noise is illustrated below for the crisis
transition in one-dimensional maps (see Sec. II A). For
simplicity we treat uniformly distributed finite amplitude
noise whose impact on the map is additive. Namely, we
consider

x, +1=Fs(x,,p,0)=px,(1—x,)+8,+c, , (8)

where |8,,| < A. In contrast to the situation of Sec. IT A,
an orbit point, with the presence of noise, can enter L;

() T T

0.8

0.6 }“ ‘ ‘
Xn ‘ gl “\ | |

0.4 ‘ | “J J ‘K!“]“ ] ‘ |

0.

N

0 100 200 300 400

(b) 0.1

0.054

-0.05+

-0.1 T T
0 200 400

n

FIG. 13. Results for the noisy logistic map. (a) x, versus n
for p=4.1 and M =2 and (b) ¢, versus n.
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without first going through L;, where i <j. To counter
this, we first augment every interval in the original L,, _,
by the amount of A on both sides and define the inverse
image under F ! of the new set of intervals to be L,,.
Similar to Eq. (4) we choose ¢, so that x, ,, falls outside
of L;,UL;, ;U ---UL{UL’. Figure 13(a) shows x,
versus n with control for p =4.1, A=0.002, and M =2,
and Fig. 13(b) shows ¢, versus n. The largest value of
lc, | is ¢ pax =0.018 and the fraction of time with ¢, 70 is
0.1.

Note that, in the noisy case, M cannot be set too large
because otherwise intervals in Ly ULy ;U -+ UL}
UL’ will begin to have overlap. This situation becomes
more severe as A increases. In fact, for A=0.02, we find
that the simple alternate strategy in Sec. II A with noise
modification works more effectively than strategy A.
Specifically, if we set

cnz_(p —Pc )/pc—A

whenever the orbit falls in L', the orbit can be controlled

with ¢,, =0.045, and the fraction of time with ¢, 70 is
0.13. On the other hand, if strategy A is implemented for
the same conditions, one obtains c,, =0.063 with the
fraction of time where ¢, 50 to be 0.5.

V. DISCUSSION

In this paper we have dealt with low-dimensional
chaotic systems. The evident biological chaos discussed
in Sec. I B above may or may not be low dimensional, and
this may also depend on the biological setting. At
present, there is controversy as to whether low-
dimensional chaos is relevant in biology [23]. Recent evi-
dence suggests low dimensionality in some cases [16,17].
Whether or not the considerations in this paper prove
relevant in biology awaits further investigation.
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